EE486C Introductory Presentation

Heart Bytes

9/9/22

Eisa Alyaseen, Alex Anderson, Abdulrahman Aziz

Overview

- The Heart Bytes team is currently working alongside a mechanical engineering capstone group to create a stent crimping machine for W.L. Gore & Associates
- Stent crimping machines are devices used in the medical field that contract stents to become the correct diameter prior to a surgery
 - Stents are a medical tool made of metal that is inserted inside blood vessels to ensure blood flow
- Our team is responsible for designing the electrical hardware and software necessary for the machine to function
- Alex is responsible for coding a microcontroller as well as ensuring all connections to and from the board work as intended
- Aziz is responsible for the sensor selection and figuring out how to integrate it in the design
- Eisa is responsible for the motor selection and figuring out how to integrate it in the design

Complete Design

Hardware Overview

- An Elegoo Arduino Mega 2560 is the primary microcontroller that will be used for the project
- A Nextion touchscreen display will be used to display data to the user and receive user inputs
 - The Nextion screen is itself a microcontroller board with a display that can transmit data to the Arduino board
- A powerful stepper motor that will be used to turn the gears
 - Several motors have been discussed, we are unsure of the exact motor
- A distance sensor will be used to detect the diameter of the stent

System Architecture and Connections

- The emergency stop is a push button connected to the Arduino RESET pin
- The Nextion display will transfer data to the Arduino board using a four pin connector
- The exact stepper motor and sensor are still undecided, so these are assumed connections

Current Prototype

- Since the final sensor has not been chosen, we are using potentiometers to simulate analog sensors
- Currently there are push buttons for the controls that will be on the touchscreen display
- Sensor data is printed to Arduino IDE
- The motor used is just a basic stepper motor that came with a kit

Software Design

Sensor design

- Originally we planned to use two sensors, One to measure the tension of reel and the other to measure the aperture radius of stent crimp.
- The radial sensor is an analog sensor that will be used to detect the change in diameter of the aperture of the stent crimp
- The load sensor is a digital sensor that will be used to measure the radial force exerted by the stent crimper
 - In order to get measurable data out of the load sensor, a hx711 chip is needed.

https://www.google.com/search?q=stent+rad us&sxsrf

The prototype I designed

• Radial force sensor Prototype circuit layout

• Radial sensor prototype circuit layout

Radial force sensor prototype circuit layout

Radial sensor prototype circuit layout

Motor Design and Prototype made

Originally Includes one stepper motor which will rotate anticlockwise and clockwise depending on the switch that is
pressed.

• Control of radial force and aperture radius

Problems faced and improvements

• Compatibility- Several Compatibility issues were faced as there was a compatibility issue of the stepper motor along with the motor control.

• Improvements- We hope to make more upgraded gear systems to better control the aperture radius of the stent crimp using stepper motor.

